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Transient imaging aims to capture and analyze how
light propagates and interacts through a scene with an
ultra-high temporal resolution, reaching the order of pi-
coseconds. This increase of information about the tem-
poral domain provides several benefits that have led to
numerous applications, such as visualization of light
in motion [2] (Fig. 1), vision through highly-scattering
media [3], and inferring material properties from a
distance. One of the most prominent applications of
transient imaging is the reconstruction of hidden ob-
jects from captured indirect illumination (Fig. 2). This
problem, known as non-line-of-sight (NLOS) imaging,
is especially relevant to our work.

Unfortunately, most methods that rely on transient
imaging require expensive hardware, including ultra-
fast cameras and pulsed illumination devices, which are
difficult to calibrate and operate. Transient light trans-
port simulation emerges as an alternative tool for de-
veloping, prototyping, and testing such systems, with-
out hardware difficulties. However, there are no avail-
able state-of-the-art systems that fulfill the needs of the
users, meaning that they are ad-hoc implementations
for specific tasks (difficult to extend to other applica-
tions) or they lack novel optimized strategies (they are
not as fast as they could be).

Our work fixes these issues by building a render-
ing tool that can simulate different sorts of time-
resolved sensing devices (including time-gated and
transient cameras), with easy-to-extend modules writ-
ten in Python, which leverages the state-of-the-art
technology of Mitsuba 3 [4]. Specifically, we can sim-
ulate the interactions of light with complex materials
and participating media, run in both CPU and GPU by
using vectorized JIT compiled code, compute ray trac-
ing queries with optimized acceleration structures, and
compute derivatives including the temporal domain.

We have published our code in GitHub1 and as a
PyPi package2 for easy installation. In Sections 1 and 2
we showcase two use cases of our simulator using time-
gated and transient cameras.

1https://github.com/diegoroyo/
mitsuba3-transient-nlos/

2https://pypi.org/project/mitransient/

1 Transient path tracing

Our additions to Mitsuba 3 include extensions to
steady-state path-tracing algorithms following the the-
ory of the work of Jarabo et al. [2], including both
surface transient_path and volumetric transport
transient_volpath. Notice that our system is capa-
ble of simulating conventional, time-gated, and tran-
sient cameras, including effects such as time unwarp-
ing [5]. Furthermore, both RGB and spectral rendering
are supported, covering the range of possible experi-
ments that could be done.

Fig. 1 shows multiple results from our transient al-
gorithms in both transport regimes: (a) We leverage
the complex Staircase scene to demonstrate several
computations that can be done with our system with
light having multiple bounces inside of it. In addition,
(b) presents a recreation of the iconic Bottle scene
from Velten et al. [5], including a bottle containing wa-
ter with some drops of milk for added scattering, which
we model using a rough plastic material containing a
participating medium with coefficients similar to the
physical ones.

Transient derivatives. In Fig. 1 (a) we demon-
strate the capabilities of our algorithm to compute
derivatives with respect to scene parameters. Specif-
ically, we show in the rightmost inset the transient for-
ward derivatives of the material of the floor computed
using transient_path.

Realistic hardware noise. Light transport simula-
tions ignore many sources of noise that happen using
real hardware (e.g. temporal jittering of the signal [6]).
To help bridge the gap between perfect simulations and
the real world, our system can also use measures from
real hardware devices to process the signal, adding re-
alistic noise.

2 Non-line-of-sight (NLOS) application

Non-line-of-sight imaging refers to the family of al-
gorithms that reconstruct information from the non-
directly visible parts of the scene from the sen-
sor. Conventional path-tracing techniques are ill-
suited for NLOS scenes. For this purpose, we
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Figure 1: (a) Staircase scene simulated using transient_path integrator. From left to right: conventional
camera, time-gated camera, peak time visualization, warped peak time visualization, and transient forward
derivatives (with respect to the material of the floor). (b) Bottle scene filled with water and milk, being
illuminated by a laser from its bottom. Up: real scene and frames of the propagation of light through the bottle
captured with a streak camera. Bottom: synthetic scene and frames computed by our transient_volpath.
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Figure 2: In order to showcase our system in a NLOS
scenario, we have recreated the Office scene from
Liu et al. [7]. (a) The laser emits a pulse towards
the relay wall, and the ultra-fast camera captures the
response of the hidden scene. We show one pixel of this
time-resolved response. (b) NLOS reconstructions of
the captured and synthetic scenes.

have added custom sampling techniques tailored for
NLOS scenes [1], resulting in an algorithm denoted as
transient_nlos_path.

To showcase the potential of our work in this area,
we have recreated the setup from Liu et al. [7], as seen
in Fig. 2 (a). The hidden scene consists of shelves,
a wooden chair, and a cardboard box. Similar to the
original experiment, we compute the impulse response
of the hidden scene on a 180×130 grid of points on the
relay wall, and as can be seen in Fig. 2 (b), our system
can be used for NLOS reconstructions.

Our sampling techniques greatly improve the conver-
gence time: this experiment requires only four minutes
of execution time on an Intel Xeon E5-2697 CPU using
500.000 samples per pixel, which would take hours oth-
erwise. Nevertheless, using 5.000 samples (with four
seconds of execution time) gives almost the same re-
construction results.

y-tal: A software toolkit for NLOS captures.
We also make available a Python library and command-
line utility, which offers a simple interface to interact
with our system tailored for NLOS setups. It is publicly
available on GitHub3, and through PyPi4.
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